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C O N D I T I O N S  I N  A N O D E  

OF O N E - D I M E N S I O N A L  GAS F L O W S  

Yu. A. Dubrav in  UDC 532.542:536.73 

In the general case of inner flows using a quasi-one-dimensional t reatment of channel flows, 
hydrodynamic conservation laws in the integral form lead to an unclosed system of equations. Additional 
hypotheses are used to solve it, when dealing with problems on flow distribution from a channel (or inflow 
into a channel) through side branches. Thus, for example, Orlov and Mazing [1] assume a kinematic relation 
for the flows in the main channel and side branches, Petrov [2] uses hydrostatic relations for the inlet part 
of a side branch, Pavlov and Yaushev [3] replace the vector equation of motion by a scalar relation, having 
a hydraulic loss coefficient, and take the flow reducing ratio equal to unity in the side branch, when solving 
problems on decomposition of an arbitrary discontinuity on local resistances of different kinds; and Stepanov 
and Chudinov identify the supersonic stream effiux from the channel through the branch with the stream 
effiux from a half-infinite space through a slot in a thin plate [4]. 

A generalization of the hypothesis of [5] that  the thermodynamic function (the coefficient of 
restoration o'p) does not depend explicitly on the geometry of the channel and branches is used in the present 
work for solving the above-mentioned problem. 

1. A channel segment with a generally variable transverse cross section within which an arbitrary 
number m of differently oriented branches are fit in a side wall is considered. The sections S -  and S + restrict 
the zone of flow rearrangement in the channel (Fig. 1), the sections Sink of the branches are chosen where 
the assumption on one-dimensionality of the flow becomes acceptable (in the minimal section of the jet for 
the effiux case). Under the assumption used in [5], the hydrodynamic laws for the volume of the channel and 
branches between the mentioned sections yield the following equations: 
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Here p, p, v, T are the pressure, density, velocity, and temperature; H = ~v2/2 + 7P/(7 - 1)p; ~, /3 are the 
coefficients of heterogeneity of the velocity field; e is the flow reducing ratio in side branches; n is the normal 
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Fig. 1 

vector; 1"*, q* are the stress and heat flux vectors (including viscosity and turbulence effects); at and ~rt/~ 
are the surfaces of the stream tubes for a transit flow and for that inflowing into or outflowing from the side 
branch. When writing down the equation of motion, a difference between the average pressure psk in the flow 
separation zone and Pmi~ in the minimal section of the jet is permitted, which is confirmed by considerable 
pressure gradients in separation zones for the effiux of supersonic streams [6]; pa and p~,/~ are the average 
pressures on the side surface of the channel and the side surface of the kth branch (within the limits of the 
contact of the jet and branch surfaces) respectively. The regions of action of the branch surface pressures 
psk and Pak depend, in the general case, on branch orientation (the angle X/~, see Fig. 1) and its shape. We 
assume for simplicity that the section Srnl~ is rectangular. Then the regions of action of these pressures can be 
described by means of the coefficient v/~ = (1 - sign Xk) /2 ,  where the sign of Xk is positive when the branch 
axis deviates counterclockwise from the normal to the surface ~r. In this case, the lengths of the surface parts 
S k A  and SI~B are the same and can be determined as 

bk = (XtD/am -- Yltan X)k, (1.2) 

where Ylk = uksign Xk; arnk is the branch width, x~k is the coordinate of the point Dk on the boundary of 
the jet minimal section (see below); b~ = 0 if the right-hand side of (1.2) is not positive. 

The subsequent transformations of Eqs. (1.1) differ from [5] only by greater awkwardness and may 
be omitted. The only essential point is that the pressures p~ and p ~  or their weight coefficients ~ and ~0~ 
appear here as "superfluous" m + 1 unknowns: pa = qo~p + + (1 - qop)p-, P,,k = ~ k p , n ~  + (1 - q%~)p~. Then 
one can write the original equations as 
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(~S~v~) + + p+a + = (~S~v~) - + p 

(1 + AG)H + = H -  + A H ( a - )  2, 
( 1 . 3 )  
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Equations (1.4) are the consequence of the equation of motion in a projection on the y- and z-axes; they permit 
the pressures Pm~: to be eliminated from (1.3). Further on, Eqs. (1.4) are used for determining the unknowns 
AGk. The coefficients kik in (1.4) contain unknowns ~p/~, describe the form and orientation of branches, and, 
for the plane flows in branches, are reduced to the relations 

klk = (1 + ~pkr -1,  k2k = kxk(r -- r + ~pkesk), 

k3k = k~k(r + ~pkr k4k = klk(r + ~pkr 

eXk = (--tan Xk + qk)/sin (.~ + Xk), r = (1 -- S..k)qk/~mk sin (~ + Xk), 

r = Ark cot ( A + X k ) / a m k  , r = [ak+Ark sin (A + Xk)]qk/Otrnk sin (A + Xk), 

r = --cot (A+Xk) �9 qk, r = q~ sin (A+Xk), Crk = sin A/cos Xk sin (A+Xk), 

(1.5) 
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q k = b k T ( 1 - - u k ) t a n x k ,  nmkr = s i n ( A + X k ) .  

The remaining variables in (1.3), (1.4) are essentially similar to those in [5]: 
m 

a-  = a +, a + = S+[I  -hOp(As - ks)], ks = (1 - AS) ~-~mkksk, -~mk=Srnk/S-, 
k=l 

AS = i - S-/S +, 

In  m 

A*r=Ar+~,(~rnAGv, ,m)kk4k/v- ,  AGk =- -Gk/G- ,  Gk = (sSpv,~)mk, G -  = (Spv) - ,  AG = ~_ Aak , 
k=l  k=l  

f ( q * - r * . v ) d S  f ( q * - r * . v )  dS 
A Q .-~ -- at + S- + S+ atk+( r 
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a2 = 7P/P, A H = AQ + ~_, AGk(AHk(H/a2) - -- 8kAQk), 
k=l  

AHk = 1, 8Hk = 0 for ouflow from the channel, Aftk = H k / H - ,  0//k = 1 for inflow into the channel, 
m 

/ "  r / "  rn, dS + rnx dS 

A r  = at+S_+S + k=l  atk+Srnk 

G-y-  
A n k ,  unlike AT, are connected with the transverse components of the stress vector for the stream tubes of 
side branches. 

Equations (1.3) describe the reaction of the gas in the channel to local finite actions: geometric AS, 
Xk, flow rate Aak,  thermal AQ, AQk and friction forces A~-, A~k. In the effiux problems under the given 
actions these equations are unclosed owing to m + 1 unknown pressures pa, pa} (or hop, %Opk). In mass supply 
problems, where Pink = Psk = P~k = P~ [5], the group of integrals in braces in the equation of motion (1.1) 
vanishes except for the first and the last integrals by virtue of the known property fsk n dS = 0 (Sk is the 
closed volume surface of the kth side branch). In doing so, the number of unknowns ~pk in Eqs. (1.3) reduces 
at the expense of b~anches with mass supply (to the only p~ in the limit). In this case the values 

k3k ---- k5 -~ O, Ark  -= --(Otnr)mk, k4k = -- cos (~ + Xk) (1.6) 

correspond to those in (1.3)-(1.5), which is in good agreement with the results [5] of mass supply to the 
channel; therefore the main consideration will be given to effiux problems. 

2. Under the assumption that  the gas state parameters in the secton S -  are known and in S + are 
sought for, solving hydrodynamic equations (1.3), carried out according to the scheme [5], results in the 
expressions 

p+ (1 - AS)(1 + Aa)2(n + 1)M -2 
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(2.2) 
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m 

E (1 - pMp-) ,,,kk3k 
c2 = ( I + A G )  -+~_~AHkAGk , ~ , =  Ar + k=l 

k=l 7 M-2 

In relations (2.1), for the low sign choice, the possibility of normal shock is provided in addition to the actions 
mentioned above. Introducing the notation below for a part of the actions 

X = {xi} = {M-, AG}, AQ, AQ}, Ar, Ark}, (2.3) 

the general structure of the solution for an arbitrary hydrodynamic parameter r can be presented in the form 

r162 = I(X, as ,  xk,  op(x, As,  pk(X, as ,  

Relations (2.1) axe regarded to be an intermediate step of the solution because they have unknowns ~0p and 
~0pk which are assumed to be functions of all possible actions. 

3. The determination of ~p and ~%k, as in [5], is based on the possibility of describing the 
thermodynamic function ap = p+/p~ (po is the drag pressure) in two ways. The first way (with the use 
of two thermodynamic laws written for a medium in the considered volume) yields the same relations as in [5] 

and suggests that the function a O) does not depend explicitly on the geometric characteristics of the channel 
(jump of the area of the channel section, orientation of side branches here) and is a function of the actions X 

@D= f,(X),  (3.1) 

where the form of the function fl is not determined within the framework of the approach, and (3.1) has a 
qualitative character. 

On the other hand, three conservation laws of hydrodynamics in the form of (2.1) give 

a(2) 7r(M-) ( n - 1 K :l: vN "~ 7/(7-1) 
= I(n + 1) (If =F vnN) 1 + T K~-'u'-~-N] (3.2) 

[r(M) = (r(M)) ~/(~-D, r(M) = (1 + (7 - 1)M2/2)-x], hence 

a (2) = I 2 ( X ,  AS ,  Xk, qo, (X, AS, Xk), Vpk (X, AS, Xk)). (3.3) 

The dependence of the function f2 on the arguments X, AS, Xk, and the variables ~op and qOpk is defined by 
relation (3.2). 

Also, it is obvious that cr (1) and a (2) determine one and the same quantity, hence 

41) = a  (2) or da(1)-da (2) =0. (3.4) 

Then, the problem is reduced to the choice of the functions r AS,Xk) and qapk(X , AS, Xk), such that 

the function a (2) is independent of A s and Xt:. One of the possible ways of finding r and ~opl:, which was 
used earlier in [5], is as follows: the differences of partial differentials of these functions and independence of 
the actions X, AS, X/~, substantiated in [5], yield a system of partial differential equations, which provides 

independence of the function a (2) in (3.2) of geometic actions AS, Xl,: 
f f l  

+ o o,+ v" 
O~Op OAs k=l O~opk OAs OAs' O~op Oxj ~= O~op~ OXj OXj' j = 1, m. (3.5) 

Thus, relations (3.5) or the original condition (3.4) are analytic~ expressions of the hypothesis that the 
thermodynaxnic function ap does not depend explicitly on geometric actions taken as independent variables 
and extend previous results [5] to a greater number of actions. The solutions of (3.5) with respect to 5op and 
q0pk, together with (2.1), describe the reaction of the flow in the channel to local finite actions X, As,  Xk, 
forming a closed system of equations. 

The investigation of the type of system of differential equations (3.5), carried out according to the 
scheme [7], has revealed that these equations are hyperbolic in the entire possible range of flow velocities and 
hence initial conditions must be specified to solve the system. In this case, any directions in the space of the 

568 



variables AS, Xk are characteristic ones. Specifically, for m equal branches (Xk = X) the following relations 
hold: 

AS = const: r n ~ p k d ~ , k + 6 0 ~ p d ~ , = - r n O o ~ d x ,  

X = const: Of 2 d~pk + Of 2 , c3f2 d/ks" 
m O~p----'k "~p acpp -- O/k----S 

4. Alternative methods of finding ~p and r are examined below, first in the case of an incompressible 
liquid. Expanding the functions in Eqs. (2.1) and (3.2) in a series in powers of Mach numbers (in the vicinity 
of M = 0 and retaining'terms up to and including M 2) yields the relations 

v + p+ 
- -  = ( 1 - - A s ) ( I + A G )  , - -  = l+(l-As)(6*+cl/ks)/Eu-(l--qop(As-k5)), v -  p -  

P--~r = lq-~p(1 - - /ks ) (6"+c lAs) /Eu- (1-c ,2p( /ks -kh) ) ,  6" = ~ -  - /k~.  -- Cl, p -  

P~k Pink p~ p+ (4.1) 
p_ =~pk P-  +(1-~pk)~--2-,  ~ = 1 ,  c l = ( I + A G ) 2  , 

m 

E u - = I / " / M  -2, A* /kr ~ 2 = -- amkAakk4k/-~mkemk; 
k=l 

2 

1 + 2Eu" , (4.2) 

which for Xk = 0 and x~) k = 0 (klk = k2k = 1, k3k = k4k = khk = 0) become identical to those in [5]. For the 
latter we shall first indicate new ways of obtaining ~p. In particular, as in [8], rearranging the variables that 
are dependent on the action /ks and independent of it (op included) in the different parts of the equation 
allows the conclusion that both sides of the equation are a certain function A(X) of the actions X, the value 
of which is easily determined (A(X) = 0 for AS = 0, hence A(X) = 0 for any/ks) :  

op(1 + 2Eu-)  - 2Eu-  - 26 - cl = / k s [ - 2 6  - cl/ks + ~p(op(1 + 2Eu-)  - 2Eu-  - (1 - As)2cl)]. 

This method gives values of o'p and (pp coinciding with the solution of the differential equation for ~p [5], 

subject to the initial condition. In the second method, the hypothesis that 0 (2) is independent o f / k s  is 
used and the values depending on As are excluded from the function f2. As a result, the expression for op 
(09 = f20) is obtained immediately and the function ~p is found in a finished form from the solution of the 
algebraic equation 

f2(X, As ,  ~o,(X, As)) - f20 = O. (4.3) 

Both of the above methods give the same results. Equation (4.3) can be considered therewith as a partial 
integral of the differential equation for ~p in [5]. 

The successive application of any of these methods to (~4.2) gives 

2Eu" + 26 + C 1 ClAS + 26 
o p =  l + 2 E u -  ' ~ P = c l / k S ( 2 - - A s ) + 2 g '  6 = a - - - / k ~ - - c l ,  

~pk = ernk[Q2k - 2ArrACk cos (A + Xi;)]/qk[Qll~ +'2ArkA~k sin (A + Xk)], (4.4) 

Q1/~ = 2am/~A~/: (I - 2 2 
- e,nk)~mk(ClAS + 26), Q2/~ = ~/~(Cl/kS + 26)(q/~ - tan xk). 

Relations (4.4) do not contain unknown functions, satisfy Eqs. (3.5) (this is verified by direct substitution), 
and hence can be considered as a partial integral of Eqs. (3.5). 

Relations (4.4) leads to the essential (and natural) conclusion that the average pressures pc (or ~p) at 
the channel side wall. depend only on summary actions (AG and Ar here) and are independent of local ones 
(in terms of belonging to an individual branch), Xk, for example. Such a dependence can occur only implicitly 
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due to the change in the total flow rate A a  (following the change in Aak) and A~. In turn, ~Opk depends on 
the characteristics of its "own" branch, and the rest of the branches affect it only through the total actions. 

The obtained values ~op and ~%k make it possible to determine the functions in (1.5) for an 
incompressible liquid (for brevity, written out here for Ar/~ = 0) in the form 

kxk = Qak sin(A + Xk)/Qk, k2k = {Qxks inA q- cos XkCOS(A + Xk)[qkQlk --~mkQ2k]} /QkCOSX.k, 
k3k = 2a~kAbk(qk -- tan Xk)/Qk, k4k = Q2k/Qk, Qk = Qxk sin(A + xk) - Q2k cos(A + xk) 

and to find finally the hydrodynamic parameters (4.1) as functions of the actions. 
5. The one-dimensional flow treatment for the efflux of an ideal liquid from a channel, beginning 

with the inlet section S~- of a side branch, results in flow "insensitivity" to the angle at which the mass is 
removed from the channel [5]. The abandonment of this assumption implies expansion of the boundaries of 
the fluid volume considered in the side branches up to the sections, where the assumption that the flow is 
one-dimensional becomes more justified, for example, in the minimal section of the jet in the separation zone 
(see Fig. 1). In this case, the channel flow parameters change with a change in the angle Xk at which the 
mass is removed. The cost for the appearance of "sensitivity" of the flow is an increase from one to m + 1 in 
the number of unknowns in the equations of hydrodynamics, and the action itself is realized by the values b/~ 
(1.2) (or x~gk, see Fig. 1). An approximate method for finding the distance from the point of flow separation 
to the minimal jet section in a side branch for an ideal incompressible liquid is presented below. 

The following assumptions are used: the flow in the branch is plane and nonturbulent in the vicinity 
of the boundary streamline AD, the flow in the minimal section is homogeneous and parallel to the axis of 
the branch, and the pressure psk in the separation zone is constant and is the same as the pressure P,,k in 
the minimal jet section (therewith v = v,,,/~ =cons t  on lines AD, DC). Under these conditions, the complex 
potential W and the complex velocity ~ = (Q/va)m~;dW/dz can be introduced in the neighborhood of the 
boundary AD. Here W, ~, z = ~l + iffl are normalized by the flow rate through the branch Qmk, vmk, and 
amk respectively. In the hodograph plane, an arc of a sector with an angle 00 corresponds to the streamline 
CAD. Taking 42AD = 0 and using the definition of the complex velocity and the function [9] 

W = (~ + 1/~)/2, 

which maps a circle arc in the plane ( onto an interval on the real axis in the plane W, one can establish a 
relation z(W) with the following real and imaginary parts: 

2 rk  - Oo - sin(2a'k - 0o) cos(2~rk - 0o) = f12(1 - ~mk)~(Mrnlc)/~rn~:, 
(5.1) 

Y~lDk = x~k/amlc = ern/c sin 20o/2e(Mmk), k e N. 

Here e(Mrak) = 1 for an incompressible liquid,/3 = - 1  for k <~ 0 and/3 = 1 for k > 0 (a sequence of values 
k is chosen from the condition of monotone behavior of e,~t~); e,,~k = (Q/va),nk is the flow reducing ratio, 
related to the flow rate action as follows: 

AGi; = --~,~k-SmkPk, I.ti; = vml;Iv- = (1 + 2Eu-(1 - pink/p-)) 1/2. (5.2) 

Thus, the relations (5.1), (5.2) establish a link of x~t ~ with the flow rate action. In doing so, with the 
help of the circulation 2rrk, a "turbulent zone" in the vicinity of the entrance into the side branch is simulated. 
The occurrence of the zone is accompanied by a flow rate drop in the branch [10, 11]. 

On the whole, the relations in Secs. 4 and 5 make it possible to determine explicitly the state parameters 
of the channel flow of an incompressible liquid under any local actions (being taken into account here). In 
some cases, experimental data on hydraulic loss r in fitted triple-branches [12] can be useful for taking into 
account the actions At .  Thus, for a flow in a channel, as in [5], we have 

r = i - c i  - 26  = 2(1  - +  G(2 + + 2ZX  (5.3)  

6. In the case of a compressible liquidcan effective way of finding ap, ~op, and ~op/~ is the last approach 
considered by the method of Sec. 4, which leads to the following relations (the case of identical branches is 
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considered for brevity): 

(go . T g ) ( 1  + - 1 go + . go  f2o(X) al, 
7 + 1  \ 2 K o q : v T N o ]  ' 

Ko = 1 + 7M-2(a  - - At) ,  No = {Ko 2 - 2(7 + 1)M-2(cl + c2(7 - 1)M-2/2)}V2; 
(6.1) 

~-(M-) ( n O _ l  KO+ v N  o )71(7--1), 
f ~  As,qap(X, AS)) -- f2o(X) = 0, fo = I~ n~ + 1) (K~ q: vn~176 1 + ~ Ko q: vnON o 

K ~ = I ~ + n ~  - At) ,  N ~ = {K ~ - 2(n ~ - 1)M-2(cl + c2(7 - 1)/2)/(7 - 1)} 1/2, (6.2) 

n o = 7(1 + (7 - 1)qapAs) -1, I ~ = (1 -- qopAs)/(1 -- As)(1 + (7 - 1)qopAs); 

f2(X,  AS,  Xk, Tp(X, AS), ~ # ( X ,  AS, X/c)) - f20(X) = 0. (6.3) 

The transcendental Eqs. (6.2) and (6.3) are solved sequentially to find Tp(X, AS) and T # ( X ,  AS, Xk). The 
independence of ~p from the local actions Xk (see Sec. 4) is taken into account in these equations. 

When determining X'Dk for a compressible flow, in addition to and partly instead of the assumptions 
made earlier (Sec. 5), the following assumptions are used: the flow is stationary, the processes are adiabatic 
in the neighborhood of the streamline AD, M- < 1, Mink ~< 1 (supersonic flows in the neighborhood of the 
branch entrance have curvilinear shocks [6] and require a special consideration). Under these conditions, the 
velocity potential and the flow function are related as follows [13]: 

0~o p0 0r  0~o p0 0r  

= - ;  0--if' 0y = - 7  
Here p/po = Pmk/Po = e(Mmk) = const [r is a gasdynamic function for the density] and in the variables 
(x, y) can be identified with the Chaplygin function. Introducing the reduced velocity potential qol = qoe(Mmk), 
one can reduce the problem being examined to the earlier-solved problem (5.1), (5.2), where r < 1 and 
Pk is defined in [5]:. 

Pk = (Mmk/M-) ( r (Mmk) / r (M- ) )  ('r+1)/2(7-1). 

7. The relations obtained, as applied to the problems of outflow from a channel (inflow into a channel), 
make it possible to state and solve a range of problems: determination of flow rates (taking into account 
jet reduction) for an effiux of incompressible and compressible liquids from a channel through an arbitrary 
oriented branch into a medium with a given pressure, into a closed volume, an injection of a liquid into a 
channel, an overflow of a liquid between crossed channels through a connective branch, finding the boundaries 
of these regimes of flow, theoretical values of coefficients of hydraulic losses [see (5.3) for A,. = 0], etc. 

In particular, an effiux of a compressible liquid from a channel through a branch (m = 1) into a 
medium with a given pressure P6k is described by Eqs. (1.4) for Pink = P6k, by (1.5), by a part of relations 
(2.1) (choosing the upper  sign) for the pressures pc and p+, by (5.1), and (6.1)-(6.3). The listed equations 
allow revealing the influence of the branch orientation Xk on the channel flow rate AG under the other given 
actions AS, At ,  Ark, AQ. 

In the case of an ideal (A r = Ark = 0, a -  = 1, amk = 1), incompressible [e(Mmk) = 1] liquid, effiuxing 
through a side branch of a channel with a constant section [As = 0, qop = 1, see (4.4), Pa = P+, see Sec. 1], 
the original system of equations is significantly simplified and consists of: (1.4) for Pmt~ = P6k; (4.1) for pa, 
where 6* = 1 - cl - A r and A;  = --A2k4k/-~mkgmk, Cl = (1 + AG)2; (4.5) for klk , k2k , k4k; (4.4) for Q1k, 
Q 2 k ,  where qt~ = b/c + (1 - ~?k)tanxk and qt~ = btc + (1 - 0}) tanxk,  b} = ~gk - 01ktanxk and ~} and ~lk 
see in Sec. 1; (5.2) connects the flow rate AG and flow reducing ratio e,nk; (5.1) connects ~ k  with the flow 
rate AG through an intermediate parameter 00 [00 is the deviation angle of the boundary streamline AD at 
point A of the flow separation (see Fig. 1)]. It is convenient to reduce all the above equations to a system of 
two equations with respect to 00 and emk.~One of them [Eq. (5.1)] remains unmodified and allows the function 
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80(sink) to be found, and the remaining one can be reduced to an equation with respect to r (the index k 
is omit ted below): 

s --~2 2 . , .~.d~ - (2~m/~ - / ~ 2 ) e m  - F(e~a, 8o, X,~ ,~ , /~)  = O. (7.1) 

Here 

F (#2 1) /2§  -~2 ~ 2 = _ _ ~ m .  ~ + (~2 _ 1) /2);  

(I + :~,~)/~sm2 2 _ 2:~.~ sin s 8o 
f = tan X 

2 2 2~'~ + ~ - [ 2 ; ~  + (1 + ~ ) , ] ~ . ~  2 

The result of solving the above equations is the flow reducing ratio e,~k represented as a function of the 
geometric characteristics of a side branch Xt, -~rnk = Sink~S- and of the complex hydrodynamic parameter 
#k = v,r , t /v-  = (1 + 2Eu-(1  - p m t / p - ) ) U  2, Eu-  = p - / p ( v - )  ~. The found values em~ make it possible to 
calculate the hydrodynamic parameters in the channel output  section and the average jet pressure on the wail 
(CB, see Fig. 1) of the side branch (4.1), provided that  AG, k3k, ks, k4k from (4.5), and A; ,  ~opt from (4.4) 
are predetermined. 

One can state a problem on the effiux of an incompressible liquid from a channel through a long 
side branch, in which the flow separation zone is isolated from the environment and the hydraulic losses ~1 
are significant, if the Bernoulli integral for the real liquid and the equation of continuity are added to the 
above-mentioned equations. 

Some of the calculation results are given in Figs. 2--4. A growth in the velocity ratio l~k = Vrnk/V- 

572 



increases the "sensitivity" of the flow to the angle at which mass is removed through a short branch 
(function era(X) in Fig. 2, where Sra = 0.1 and /~k = 1.2, 1.4, 1.8, 3 for curves 1-4 respectively; ern is 
given for comparison by curve 5 according to the hypothesis of [3]). For an incompressible fluid efflux through 
a side branch from a semi-infinite space the variable ktk gives the same effect [11]. A greater "sensitivity" to 
the angle at which mass is removed reveals itself with a growth in the size of the opening ]~ra (function Aa(X) 
in Fig. 3, where/~k = 2 and ~m = 0.1, 0.3, 0.5 for curves 1-3 respectively, the solid curves correspond to 
an effiux from a short branch, and the dashed curves from a long one with (I = 5). Therewith, an increase 
in the hydraulic losses in a side branch (with an increase in its length) is accompanied by a decrease in the 
flow rate and "sensitivity" to the angle at which mass is removed from the channel. For the cases examined, 
the "sensitivity" almost disappears for (1 = 5 (which corresponds to the branch length in calibers -,~ 102 for 
the quadratic resistance law). These results agree with the experiment of [2], where for an efflux through a 
long branch under the conditions ]~ra = 0.0036-0.142 and -50  ~ ~< Xk ~< 40 ~ the variation AG(X) of the flow 
rate did not fall outside the limits of the "error, permissible for practical purposes." Detailed characteristics 
of one typical variant ['~ra = 0.5,/~k = 2, P,njP- = 0.985, and the branch is short: (1) AG, (2) v+/v - , (3) 
PmJ,/P--- 1, (4) pa/p--- 1, (5) Pak/P-- 1] are given in Fig. 4. In this case, the flow rate drops down when 
the branch axis deviates toward the flow, the pressure p~, = p+ decreases, and Pak ~ P~, when Xk ~ r /2 .  
In certain cases, Eq. (7.1) has an explicit form of the solution, e.g., for Xk = 0, it is reduced to a quadratic 
equation (as in [5] for a compressible liquid); if we assume additionally ]~ra ~ 0 (an emux from an infinite 
half-space), then era = (/z 2 - 1)/2/~ 2, whence r  0 for # = 1 is the same result as in [10], and era ~ 1/2 
for # ~ cxD [14] (an efflux through a nozzle from a semi-infinite volume with a stagnant liquid), as might be 
expected. 

A generalization of the hypothesis [5] to a greater number of geometric actions, carried out in the 
present work, allows the conclusion that  the store of mechanical energy of a flow, characterized by the pressure 
restoration coefficient ~rp, does not change under any geometric actions, considered as independent arguments 
of the function ~rp. Thus, one can state and solve, in addition to the above-mentioned problems, the problems 
on finding the gas state parameters in channels with axis breaks and with other possible combinations of 
geometric actions. The  problems of mass supply, where pa = P6k = Prak, are somewhat specific. Then it 
follows from (1.4) that  Ark = --(anr)rak = amk sin (A + Xk), i.e., the whole momentum,  which is normal 
to the flow axis, is taken by friction forces [5]. The variable Ark is in the list of arguments (2.3) of the 
function ~rp (3.1). Hence the angles of mass supply are excluded from the list of geometric actions due to the 
unique relation with A,-I,. 

On the whole, relations (2.1), (6.2), and (6.3) or their analogues for an incompressible liquid can be 
considered as conditions in a node of one-dimensional liquid flows that  satisfy all hydrodynamic conservative 
laws, the second law of thermodynamics included. 
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